原理:
快速排序是排序中我比较喜欢的一个算法,效率高,十分常用。而且这个算法的思路也十分不错,每一次的遍历就可以排出一个确定其在数据中最终位置的数据,非常适合原始数据就比较无序的情况。以升序排列为例,整体思路是,
- 设置两个变量,一个在头,一个在尾,不妨设成start与end。先从数据中选出一个关键数据-pivot(通常把数据中第一个数据就设为关键数据),再从右向左找,end自减,碰到一个比它小的,这时就把关键数据缓存起来,然后把找到的数据放到原关键数据的位置。
- 再从新位置start开始向右找,start自增,直到碰到一个比关键数据大的,再把这个数据放到之前的end位置。
- 重复向左找和向右找的过程,直到start和end相同,这时就把关键数据放到这个位置,它的左边一定都是比它小的,而右面一定都是比它大的。
- 此时完成一个数据的定位,通过递归,再进行此时关键数据左半边的递归,和右半边的递归,最后把全部数据都定位,完成排序。
看下面一个小例子:
数据假设为3,0,2,6,1。
- 把3设为关键数据-pivot,开始时end为4(Array.length - 1),start为0,然后end自减,每次看Array[end]的值与关键数据3大小,此时3>1,所以把1放到start位置,数据变为1,0,2,6,1。pivot=3。
- 再向右寻找,start自增,看Array[start]与pivot的大小,1<3,继续查找,0<3,2<3,6>3,所以此时start=3,把6放到end位置,数据变为1,0,2,6,6。
- 此时start = 3,end=4,再像左查找,end自减,发现start与end相同,此时停止pivot定位,把pivot放到start位置上,也就是1,0,2,3,6。此时就可以看到,3的左边都是比它小的数据,右边都是比它大的数据。
- 以上只是一次的定位,这时进行递归,把1,0,2看成一个新数据再次进行之前的操作,把6也进行同样操作,最终得到0,1,2,3,6。
算法:
void quickSort(int Array, int start, int end) { if(start < end) { int pivotPos = partition(Array, start, end); quickSort(Array, start, pivotPos - 1); quickSort(Array, pivotPos + 1, end); } } int partition(int Array, int start, int end) { int pivot = Array[start]; while(start < end) { while(start < end && pivot <= Array[end]) end--; Array[start] = Array[end]; while(start < end && pivot >= Array[start]) start++; Array[end] = Array[start]; } Array[start] = pivot; return start; }
稳定性:
快速排序是不稳定的排序算法。假设一组数据5,3,3,2,3,7,第一次查找就会把标红的3放到5的位置。
优缺点:
快速排序的效率与原始数据排列有关,若原数据已然有序,则算法只需比较,递归会直接退出。但平均效率还是很好的。
复杂度:
假设数据逆序,那么就要进行N次排序才确定他最终位置。最坏需要进行N - 1次递归,所以最坏时间复杂度为o(N ^ 2)。当数据很乱的时候,时间复杂度最好为o(N * log2N)。递归就是栈的操作,所以栈最深为N - 1。空间复杂度为o(N)。平均空间复杂度为o(log2N)。
测试:
100000的数据,基本无序,平均用时只要12 ms。跟前面的排序相比,简直效率提升了不止100倍。
语言Javascript。